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SUMMARY 
An extension of the linearized theory of supersonic flow past 

quasi-cylindrical bodies of almost circular cross-section has been 
found which enables a direct calculation to be made of the overall 
forces on wings mounted on such bodies, subject to certain 
restrictions on the plan-form. The  method is applied to two 
examples: (i) the effect of an arbitrary body distortion on static 
stability at supersonic speeds; and (ii) the effect of wing-body 
interference on rectangular wings mounted on a cylindrical body. 
The drag calculations in the second example are compared with the 
results of the supersonic area rule, which is found to be in error 
for moderate values of the ratio of wing chord to body radius, 
though the discrepancy is not serious from a practical point of view. 

1. INTRODUCTION 
T h e  linearized theory of supersonic flow past quasi-cylindrical bodies 

of circular cross-section, initially due to  Lighthill and Ward (see, for example, 
Ward 1955), has recently been developed by Randall (1955) to cover the 
case when the cross-section of the body is of arbitrary shape differing only 
slightly from a circle. A similar method has also been used by Nielsen 
(1955) in his work on wing-body interference. T h e  method consists briefly 
of expanding the local streamwise slope of the body, together with a suitable 
basic solution of the linearized equation for the velocity potential, as Fourier 
series in terms of the meridian angle; the boundary condition of zero 
normal velocity, which may be considered to apply at a mean circular 
cylinder, is then used to determine the arbitrary coefficients in the series 
for the velocity potential. The  Heaviside operational calculus is found 
to be invaluable in simplifying the analysis. The  complete pressure field 
due to a body of this type can thus be found, at least in principle, and indeed 
the calculation of the pressure on the surface of the body is now relatively 
simple. But, as Randall (1955) points out, a very much larger amount of 
numerical work is necessary if the pressure off the body surface is required, 
and although much of the basic computation has now been done by 
Mersman (1954) and Nielsen (1957), there is still quite a formidable task 
remaining in any particular case. 

P.M. c 
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Such extensive pressure calculations are necessary if it is desired to find 
the effect of the flow round quasi-cylindrical bodies on wings or fins; and 
in effect they are also necessary in problems involving the interference 
potential between wings and bodies. If detailed wing pressure distributions 
are needed, there seems little that can be done by way of further simplifi- 
cation. However, if only the overall forces or moments on the wings are 
required, it has been found that in certain special cases considerable 
analytical simplification can be achieved and the problem reduced to one 
which is little more difficult or lengthy than that of determining the pressure 
on the body surface. This has been done by integrating the disturbance 
pressure field due to each Fourier component of the body distortion along 
lines in the plane of the wings at right angles to  the axis of the body, from the 
body surface to the limit of the disturbance. The restrictions on the wing 
shape which must apply in order that the method shall be valid therefore 
differ according to  the particular force or moment in question. In  all cases 
the leading edge must be supersonic and the trailing edge at right angles 
to the free stream; if there are subsonic wing tips these must be outside 
the field of influence of the body distortion. I n  the case of drag, it is further 
necessary that the local wing slope should be constant along lines at right 
angles to the body axis, and this effectively limits the method to rectangular 
wings of constant cross-section. 

In  spite of these rather severe limitations, the method has direct 
applications to some problems which are of practical interest. First, it 
is shown how to obtain the changes in lift and pitching or rolling moment 
produced by an arbitrary small distortion of body shape. Secondly, the 
more conventional problem of wing-body interference is considered, and 
results are obtained for the lift, pitching moment and drag of rectangular 
wings of arbitrary cross-section mounted at incidence on an infinite circular 
cylinder parallel to the free stream direction. They are compared with the 
previous work of Nielsen & Pitts (1952) and Nielsen (1955), which is shown 
to contain errors for the larger values of the ratio of the wing chord to thc 
body radius. 

The results obtained in this way for the wave-drag of combinations 
with rectangular wings and cylindrical bodies are of particular interest 
because they provide an example in which direct comparison may be made 
with the supersonic area rule (Jones 1953). It appears that for moderate 
values of the chord-radius ratio the interference correction to the total 
wave-drag given by the area rule is actually of the wrong sign, and that 
only for very large values of this ratio does it approach the true linearized 
theory. It must, however, be realized that this interference correction is 
quite small compared with the total wing drag (except possibly for wings 
of very small aspect ratio, to which the present method does not apply) ; 
it is probable that in most problems involving real aeroplane shapes the area 
rule will be much more successful in estimating the total wave-drag, but 
this point still requires further investigation. 
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2. LINEARIZED THEORY OF SUPERSONIC PLOW PAST QUASI-CYLINDRICAL 

BODIES 

We consider supersonic flow with a free stream velocity U past a body 
whose shape differs only slightly from an infinite circular cylinder of radius R,, 
with its axis in the direction of the free stream. We shall use standard 
Cartesian axes Ox, Oy and Ox, with Ox coincident with the axis of the 
cylinder ; Oy will later be taken in the plane of the wings and Ox vertically 
upward. The  origin 0 will normally be chosen so that the body distortion 
is zero upstream from the plane Oyz (see figure 1). Dimensional coordinates 
will be denoted by ( X ,  Y ,  2) ; non-dimensional coordinates (x, y ,  x) are 
defined by 

x = XIPRO, y = Y/Ro,  z = Z/Ro, 
where /3 = ( M 2 -  l)Y2 and M is the Mach number of the free stream. 
We shall also use polar coordinates (R,  8, X )  such that 

and again define r = R/Ro. 
Under the usual limitations of the linearized theory, the motion has a 

velocity potential UX++(X, Y ,  Z ) ,  where the disturbance potential $ 
satisfies the equation 

Y = RsinO, Z = RcosO, 

(1) 
/ 3 2 - = - + - - - + - - + - -  a24 a 2 4  a 2 4  a24 1 a+ 1 a 2 4  

ax2 a y 2  az2- aR2 R aR ~2 ae2* 

Introduction of the dimensionless variables defined above reduces this to 

We shall use the Heaviside operational calculus (see, for example, 
Jeffreys & Jeffreys (1956) or van der Pol & Bremmer (1950)) in which p 
stands for alax, so that equation (2) may be written 

(3)4 

(see Ward (1955) for a rigorous justification of this procedure). 

is 
'I'he basic solution of equation (3) that is applicable in the present case 

m 

9 ( P ,  y ,  4 = 2 K,,(pr)(a,,(p)cos dl +b,(p)sinnQ (4) 
11 = 0 

where K,, is the Bessel function of the second kind with purely imaginary 
argument (as defined in Watson (1944), p. 78), and a,,@), b,,(p) are 
arbitrary functions of p .  

* In what follows the operational form of a functionf(x) will be denoted by f(p), 
where -%) 

 PI = P J e--p7f(X)dxJX) 
0 

and the relationship between f(x) and f(p) will also be written (cf. van der Pol & 
Bremmer 1950) 

f(P) c m  or f(4 2 f@). 
c 2  
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The boundary condition of zero normal velocity at the surface of the 
body gives 

where 7 is the slope of a meridian section of the body and is assumed to 
be zero for X < 0. The non-dimensional form of equation (5) is 

We may expand ~ ( x ,  8) as a Fourier series in 0: 
m 

~ ( x ,  8) = 2 (A,(x)cos no -I- B,(x)sin nB}H(x) (7) 
n=O 

over the range 0 < 8 < Zn, where H(x) is the Heaviside unit function. 
The operational form of this is 

W 

Y ( P ,  8) = 2 (A,(p)cos no + B,,(p)sinn8). (8) 
n=O 

Combining equations (4), (6 )  and (8) and equating coefficients of cos n6’ 
and sinn8, we find that 

a,, (PI = U& AntP)/PK;(P)? 
and U P )  = URCl Bn(P)/PaP).  
Substituting these values in equation (4)) we obtain for the final operational 
form of the disturbance potential 

The function +(x, r ,  8) which is the interpretation of equation (9) satisfies 
the boundary conditions of the body and at infinity, and is identically zero 
for x < r ;  it is therefore the correct linearized disturbance potential 
over the whole of space exterior to the body. 

The perturbation pressure coefficient (P- P,)/q, (where qo = $po U2, 
po denoting the density of the free stream) is given to the same order of 
approximation by the linearized expression 

If the functions Wn(x, 7 )  are defined by 

WJX, 7 )  3 W,,(p, r )  = - e’+l)A- It  ( P w a P ) 9  (11) 
and we interpret equation (10) by the product theorem (Jeffreys & Jeffreys 
1956, $12.13), we obtain 

2 m  c, = - 2 fcosne l u x -  5, y) dA,,(5- y + 1) + 
Pn-O < &?-I-- 

+sinno j; ~ ~ ( x - - e , r ) ~ ~ , ( ~ - - t - + ~ )  
-+I- 
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where the Stieltjes notation has been used. Again, equation (12) gives 
the perturbation pressure everywhere exterior to the body. 

Randall (1955) has evaluated the functions Wrl(x) FS WT,(x, 1) for 
Y = 1 and n = 0- 10 over a wide range of values of x; the determination 
of the pressure on the surface of the body is thus a comparatively simple 
matter. In  cases where Wn(x,r) are required for r > 1, the computational 
problem is much more formidable, though considerable progress has been 
made by Mersman (1954) and Nielsen (1955, 1957). The functions W&, r )  
defined above (which differ only by the factor eP+l)  from those used by 
Randall (1955)) are related to the corresponding functions of Nielsen 
(1955) (which will be distinguished here by the additional suffix N )  by 

jb ~ ~ ~ , ~ ( f , r ) t i t  = r-1/2- ~ ~ , ( x ,  r )  for x z 0, (13) 

and in particular, when r = 1, 

The results of Mersman and of Nielsen can be used, in conjunction 
with equations (7) and (12), to obtain the complete pressure field of any 
quasi-cylindrical body. 

Unfortunately, it is found that in most cases of practical importance 
(see, for example, Nielson 1955) the Fourier series (12) does not converge 
with sufficient rapidity for small values of (x - Y + l ) ,  so that the pressure 
near the Mach cone x = r - 1 is difficult to determine accurately. This 
fact, together with the large amount of numerical work which still has to 
be done in any given practical case, means that the method is not to be 
recommended as a way of determining overall wing forces if there is any 
reasonable alternative. 

In  the next section we shall show that it is possible to obtain comparatively 
simple expressions, which do not in fact require any knowledge of the 
functions Wn(x, r )  except at r = 1, for the integrals of the pressure coefficient 
(as given by equation (10) or (12)) from r = 1 to co along strips perpen- 
dicular to the x-axis. In  the following sections some applications to 
practical problems will be given. 

3. DETERMINATION OF CERTAIN PRESSURE INTEGRALS 

3.1. DeJinition of the functions I,,,, 
In problems requiring a knowledge of wing lift and rolling moment, 

it is necessary to determine both the total normal force and the moment 
about Ox produced by the disturbance pressure field acting on an 
infinitesimal strip, parallel to Oy in the plane x = 0, extending from the 
surface of the cylinder R = R, to the Mach lines H = R,+A*//3 which 
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represent the- l i m i t  o f  the dioturhancc, and of width XX (scc hgiirc 1) .  
'Thenc arc given resprctively by 

I?" I LIP I + r  

I<. 1 

X L  = - hA J (Z'- l',,)dK = -Ii, ,iLY j ( I '  P 1 , ) d Y ,  

and 

Since I > - -  l',, - 0 f o t  Y 

bc cxtcrided to rtifirlity. 

. 1 I .x,  thc upper limit in thrsr rxprcwnionh may 
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. The remainder of this section will be devoted to the interpretation of 
the operational functions LJp). 

3.2. Interpretation of Ifl&j) 
'I'he transformation pr  = t in equation (19) gives 

Im,&) = - jm 4""Kdt) d t / ( p m + z K ( p ) ) .  (20) 
P 

'r'he upper limit in equation (20) should strictly be p co ; but since when 
interpreting Ira,tb(p) by means of Bromwich's integral (Jeffreys & Jeffreys 
1056, 5 12.09) the real part of p is to be taken as positive, and since also 

N ( ~ / 2 t ) l / ~ e - - ~  when I[/ + GO, the integrals converge at the upper 
limit and are given correctly as written. 

PKll(()  d[ may be expressed in terms of the associated 

Ressel functions known as Lommel functions (see Watson 1944, $10.7 
el seq.). 

The functions j," 
We have (Watson 1944, 5 10.74) 

j' zw71,(z) dx = (m + n - i)zc~tz)s~'-l,~~-~(z) - zc1L-l(z)s7fi,,L(z), (21) 

where C,,(z) is any cylinder function (arbitrary solution of Bessel's equation) 
and Sm,ll(z) is the Lommel function of the second kind. I n  particular, 
taking C,(z) to be the first Hankel function Hkl'(x), and writing x = it, 
we get 

i / l l l  I j' t i i t~; f~( i f j  dc = (m + n - l) i tHf:)(i t)snb l,,,-l(i[) - i t ~ j ~ l j  l ( i t )~m, l , ( i t j .  

(22) 
Now K,( ( f )  = ~mirLf1H$)( i t ) ,  (Watson 1944, §3.7), so that 

I' t'''&l(O 't = - + - 1)~~,~([ )T7"b-* ,~ , -1( t )  + ~ ~ ~ , - - ~ ( [ ) ~ ~ , , , , ( t ) l ,  (23) 

where Tm,J() = i-"L+lS m,fi(if)- (24) 
'l'hc Lommel function Srn,n(z) is a particular integral of the differential 

equation d2Y dY 
22 -2 + x - + (2  - ."y = z m + l .  dz dz 

When m+n is odd, Sm,lL(z) is defined by the finite series 
(m-1)2 -nz  ( ( m - 1 ) 2 - a 2 ) ( ( m - 3 ) 2 -  + 2 4  ' -...I. (26) 

When m + n  is even, the definition of Sm,,L(x) is more complicated, but it 
still has the asymptotic expansion (26) when 1x1 is large. 

Thus T,,,(z) is a particular integral of the differential equation 

and is given by +.*.I (28) 
(m - 1)2  - a2 [(m - 1)2  - n2){(m - 3)2  - nz} 

24 + 



40 R. C.  Lock 

when m + n is odd, while if rn + n is even it has the asymptotic expansion (28) 
when 1x1 is large. 

If in equation (23) we make use of the relation 

- L l ( 4 7  = q n  + ne-l&(t), 
we get 

I E  PK,(f) & = t~Tb(o{nt-1Tm,&3 - (m + n - 1)TYa-l,n-l(m + 

+ K ( t ) T m , & ) ,  (2')) 
and in particular 

- tmKM a = PK,(P){flP--'Tm,m(P) - (m + n - 1)Trn-l,?&)l + 
P 

+PKdP)T?it,%(P), 
since the indefinite integral given by (29) clearly vanishes when f - +  a. 
Substituting in equation (20), and remembering that Wn(p) = - K,(p)/Kl,(p) 
(equation (11) with r = l), we obtain 

Im,m(P) = P--'Tm,n(P) -P-'Wn(P> x 

x [~P-~*-'T,,,(P) - (m + n - l)~-~'Tm-1,n-1(~)] - (30) 
It is convenient to write 

ITf iAP)  = % J P )  -P-'Wb(P){n%&,,(P) - (m + n - 1)%-l,T%-l(P)l* (32) 
In  order to interpret the operational functions Tnb,n(p) and ~?,&, , ,~(p)  

we first note that a series expression can be obtained at once from equation 
(28). Thus 

{(m - 1)2- n"{(m - 3)s - nq + P4 + ...I, 
so that 

T,,%(X) = x2/2 ! + {(m - 1)2 - n2}x4/4 ! + ((m - 1)2 - ~ ~ ' l { ( m  - 3)' - n2}x6/6 ! +... 

If m + n  is odd, this series terminates and completely defines T,,,(x). If 
m+n is even, the series (33) still defines T ~ , ~ ( x )  for sufficiently small x 
(in fact for x < 1) ; but an alternative approach is preferable, which yields 
remarkably simple results in the cases of interest at present, namely m = - 1, 
0 and 1. 

(33) 

Consider the differential equation 
d8Y dY Xk (x2-1)- +x- -+ = - - 
dx2 dx k!' (34) 

where if k is a negative integer the right-hand side is to be replaced by zero. 
We take y to be that solution of equation (34) for x > 0 which satisfies the 
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initial conditions y(0) = A, y'(0) = B. Then the operational form of this 
equation may be shown, with the aid of the relation (cf. van der Pol & 
Bremmer 1950, Chs. I V  & X) 

to be 
xny(x) = P( - d/dP)nY(P)/P, ( 3 5 )  

5 + p -  dY -(p2+n2)y = -p--k-pB-p2A if k >, 0, 1 
t (30) p 2  dp2 dp 

= -PB-P2R i f k  < 0. j 
Comparing equation (36) with the equation (27) satisfied by T,r,,,,(p), 

we see that they are identical provided that k = - ( m +  1) and that 
( a ) i f m =  - l , w e t a k e A = B = O ;  ( b ) i f m = O , w e t a k e A = O ,  B = l ;  
(c) if m = 1, we take A = 1, B = 0. Now the further transformation 
x = s in4  reduces equation (34) to the form 

and the solution of equation (37) satisfying the required boundary conditions 
at x = 4 = 0 can easily be found. 

In  this way we obtain the results 

To %(x)  = n-l sin%+, O G X G l  (38) I T-,,,(x) = r 2 (  1 - cos nd), 

Tl,&) = cosn4, 
where for n = 0 the limiting values as n + 0 are to be taken. 

are 
The corresponding results for the functions ~ ? ~ , ~ ( x )  (equation (3 1)) 

(39) 
T - ~ , ~ ( x )  = r 2 (  1 - cos nC), (n # 0) 

with T-l,O(X) = B V  ; 
1 
I 

cos(n- I)+ (1.1 > 1) i 
1 

2n(n - 1) 
cos(n + 1)4 - To,lL(x) = na-1 - qn+ 1) 

1 1 

I 
I 

and ~ ~ , ~ ( x )  = + x 2 ;  J 

(40) 

with ~ ~ , ~ ( x )  = cos 4 + sin 4 - 1 = (1 - x2)@ + x sin-l x - 1, 

1 cos n4 - cos(n-2)$- - 
n2-4 4(n- l ) (n -2 )  2(n2 - 1) 

1 1 1 
and T~ , , , * (X)  = - - 

T 1J ( x )  = - I , + ~ ~ s ~ ~ + + # c o s + - - ~ c o s ~ + ,  I 
and 71,2(x) = +x2- &a?. j 

It may be verified directly that equations (39) to (41) are equivalent 
to the series expressions (33) for T,,~(X). 
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It remains to consider what happens to 7,, , , , , (x) for x > 1 in cases where 
77,t,,#,(x) is not simply a polynomial (i.e. when m + n is even). In these cases 
the expressions (39) to (41) appear to break down, but it can be shown 
that they can still be used provided the real part is taken, so that + is to be 
replaced by IT. Thus when x > 1, we have simply 

T - ~ , ? , ( X )  = n-', (n  odd) 1 
I 

and T-~,~(x)  = 7?/8 ; J 

7,,,71(x) = (nz- l)-I, ( n  even f 0) 

and To,o(X) = $TX- 1 ; 

and 

(42) 

(43) 

(44) 

The range of values of m in equations (39) to (44) can be extended if 
desired by means of the recurrence relation 

whence 
PZ%+&J) = 1 + {(m + - n2)%,u(P), (45) 

(46) Twt+Z,, ,(x) = I x Z  + {(m + - nZ) jx (x - 0 7 r n , , m  @* 
0 

This may be derived either directly from equation (33) or from the 
recurrence relations satisfied by the Lommel functions. 

Returning to equation (32) and interpreting, we get 

Equation (47), together with the expressions (33), (39) to (44) and (46) 
for T ~ , & ) ,  enables IrrJx) to be calculated without reference to the values 
of Wn(x, Y) except for Y = 1. This has been done for m = 0 and 1 ,  
n = 0 to 6 for a range of values of x from 0 to 5 ; the results are given in 
table 1, and are shown graphically in figure 2. 

In spite of the comparative simplicity of equation (47), it does involve 
certain computational difficulties which are not immediately obvious. 
In the first place, if m + n is odd, T ~ , ~ ( X )  is a polynomial of degree m + n + 1, 
so that except for the smaller values of m + n, IrnJx) is given by equation (47) 
as the difference of two functions which become large rapidly as x increases, 
while Im,n itself remains small. This fact, coupled with the oscillatory 
nature of W,(x) for the larger values of n, makes it difficult to obtain 
satisfactory accuracy in such cases ; fortunately, asymptotic formulae are 
available which are adequate for most practical purposes (see below). 

The second difficulty, which is less serious, arises from the fact that 
when m + n is even, ~ ~ , , ( x )  has a discontinuity in its first or second derivative 
at x = 1 ; in fact T:~,,(X) becomes infinite at this point. Thus care has to 
be taken in evaluating the integral in equation (47), and formulae of the type 
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x 
__ 
0 

0.2 
0.4 
0.5 
0.6 
0.8 
1 .0 
1.2 
1 4 
1.5 
1.6 
1.8 
2 .o 
2.2 
2.4 
2.5 
2.6 
2.8 
3.0 
3 -2 
3.4 
3.5 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5 .o 
'y3 

- 

1 0 ,  4 I0,o 

0 
0.01 88 
0.0707 

0.1504 
0.2537 
0.3772 
0.5181 
0-6741 

0.8432 
1,0240 
1.21 50 
1.41 51  
1.6233 

1.8387 
2.0606 
2.2883 
2.5213 
2.7590 

3.0010 
3.2470 
3,4966 
3.7494 
4.0053 
4.2640 
1.5252 
4.7887 

1 i . n  

0 
0.125 
0.5 
1.125 
2 .0 
3.125 
4.5 
6.1 25 
8.0 

0 

0.091 

0.212 

0.234 

0.194 

0.162 

0.161 

0-170 

0.167 

- 

0 

0.068 

0.068 

0.037 

0.051 

0 

- 

0 
0.0166 
0.0457 

0.0574 
0.0469 
0.0295 
0.0219 
0.0261 

0.0342 
0.0382 
0.0363 
0.0328 
0.0312 

0.0321 
0.0336 
3.0344 
0.0339 
3.0332 

3.0329 
3.0330 
D.0333 

3 4 3 3 3  

~ 

2;,6 

0 

0.1055 

0.3545 

0.6686 

0.9958 

1.3053 

1.5814 

1.8185 

2.0174 

0 
0.0185 
0.0675 

0.1361 
0.2143 
0.2933 
0.3664 
0.4293 

0.4792 
0.5157 
0.5396 
0.5523 
0.5660 

0.5530 
0.5456 
0.5358 
0.5252 
0.5151 

0.5064 
0.4994 
0.4944 
0.4912 
0.4897 
0-4895 
0.4904 
0.491 7 
0.5000 

(c: 

0 
0.0177 
0.0585 

0.0999 
0-1257 
0.1307 
0.1188 
0.0996 

0.0822 
0.0721 
0.0703 
0.0743 
0.0805 

0.0856 
0.0881 
0-0879 
0.0860 
0.0838 

0.0821 
0.0815 
0.0818 

0.0833 0 .o 

11 ,  2 N 
__ 

0 
0.5 
1 4 
1.5 
2 4 
2.5 
3 .0 
3.5 
4.0 
'X 

1 1 . 1  l1,4 

0 
0.1229 
0.4709 
1.0002 
1.6620 
2.41 29 
3.2184 
44527 
4.8984 

0 
0.1067 
0-2868 
0.3718 
0.3596 
0.3303 
0.3201 
0.3273 
0.3340 
0.3333 

0 
0.094 
0.181 
0.150 
0.119 
0.127 
0.1 30 

0 
0.080 
0.096 
0.056 
0.067 
0.070 
0.064 
0.067 
0.067 
0.067 

0 
0.065 
0-043 
0.037 
0.05 

J.0417 

0 
0.1166 
0-3926 
0.1970 
0.941 1 
1.1009 
1.1932 
1.2504 
1.2963 

0.125 

Table 1 
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given in Jeffreys & Jeffreys (1956, $9.092) must be used near x = 1 in place 
of conventional methods of integration. In spite of these singularities in 
the derivatives of T ~ , ~ ( x ) ,  it can be shown that in fact 17n,n(x) and all its 
derivatives are continuous functions of x for x 2 0. 

5-1 

4-5 

4.E 

3.5 

3.c 

2.5 

Il,n(xl 

2.C 

I . 5  

1.0 

0 5  

0 

Figure 2 (a). The functions lo,n(x). Figure 2 (b ) .  The functions Il,n(z). 

3.3.  Asymptotic expansions for 17n,n(~)  

be obtained from the definition 
When x is large, asymptotic expressions for the functions Il,,,I,(x) can 

00 

L,h )  3 I w d P )  = -P-n-2 j tmK,(O 4 / K ( P )  
P 

by expanding as a series in p .  
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Now when n > 0, 
KJE) = &[(n-l)!(ff)-"-(Z!) '(n-2)!(&&"t2+ ...+ 

+ ( - 1)7~-1(44)n-~/(n - 1) ! ] + ( - l))A+l(n ! ) - 1 ( k ( ) ~ &  x 

x (log&t+y-+(l+ ~+ . . .+n- l ) }+O(fa+ l log~) ,  (48) 
where y is Euler's constant. It is 
convenient to denote that part of the series expansion of PnK,(() which 
involves only negative powers of [ by P(fmK7,). Then fmK,(E) - P@nK,,(()} 
is regular at 5 = 0, and we can write 

We suppose first that n > m +  1. 

jm PK,,(4) = [PK&)- P(trnK,(E))I @+ jm w m ~ n ( t ) } d f -  
7) 0 P 

[E"K,(O - P{sl"Kn(t))I a. 
- 1: 

The first term of this series is a constant ; and it is easy to see that the sum 
of the last two terms may be written simply as the indefinite integral 

- \ fmK,(f)df,  obtained by integrating the series for ('"K,(() formally 

term by term. 
The result differs slightly accordingly as m + n  is even or odd. I n  the 

former case the important terms of the expansion inascending powers ofp are 

- 1 f r n ~ , ~ ( ( )  d t  = zm-l[(n - 1) !p'"-"+l/(m - n + 1) + odd powers of p] + 
+ O(prn+,+l logp). (49 a) 

In the latter case a logarithmic term occurs inside the square bracket, due 
to the term in f - l  in the expansion of [mKa(,$), and so 

- j pKfl(t)d5 = 27~-y(n- 1) !p7?1-'~+1 /( m - n + l ) +  

P 

co 

P 

'n 

P 
+even powers of p + O(1og p) + O(p7"+"+l logp). (49 b) 

In both cases 

p ~ ' + ~ K : , ( p )  = - 2n-l[n(n - 1 )  !p"+~?+l+ a power series inp] + O(pnl+~1+Ilo SP) 
(50) 

Dividing equations (49) by equation (50) and interpreting, we obtain the 
asymptotic expressions 

1 

J 

When n < m + 1 the same technique can be used but the results must 
The asymptotic expressions for I,,,,,(%) and be obtained individually. 

l l , , , ( x )  are summarized below ; 

i 
l0,,(x) N knx - log 2 ~ -  1 + &TX-'+ x-2(log ZX - 1/6)- $ T X - ~ ( I O ~  ZX- 17/16), 

f , , , l(~) ~ 1 0 g Z ~ + ~ - ~ ( l o g 2 ~ -  3/2) +(15/4X4)(10g2x- 5/4), 
&,n(X) - - 11, (a  > 1) ; 

(52) 
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l1,&%) = 4x2, exactly, 

&(x) - ; log 2x + a + O(x-4), 

4,&9 l l4 .  - 21, (. > 2). 

]I,~(x) - ~ T X  - 1 - 1 ~ x - I  4 - 'x-' 3 +  log 2~ - 19/8), 

Although these expressions are strictly true asymptotically as x + 00, 

it is found that when n = 1 they are unexpectedly inaccurate for moderately 
large values of x, due to certain exponential terms which occur in the 
expressions for W,(x) when n > 0 (cf. Randall 1955). For example, it 
may easily be shown that 

and Wl(x) contains the term 

where tcl = - 0.6453 + 0.5012i. We should therefore add to the asymptotic 
expression given in (52) for 10,l(x) the additional term 

and this is found to improve the accuracy considerably. 
the unmodified formula gives 
the correct value being 1.58. 
2.13, 2.00 and 2.02 respectively. 

IO,l(P> = F2 --P-3w1(P)9 

- 2.@{a1 em1 "/( 1 + a:)>, 

- e-0'645"(0*571 cos0.501x + 2.174sin0.501x), 
Thus, for x = 3 

= 1.85 ; the additional term gives 1-53,  
T h e  corresponding values when x = 4 are 

In  the same way it is found that the correction 
e-O 645.r( 1.797 cos 0 .501~ - 1.756 sin 0 .501~)  

should be added to  the expression for Il,l(x) in (53) ; again this gives an 
accuracy of about 1 O , ,  when s = 4. The  corresponding corrections for 
II > 1 are much smaller and may usually be neglected. 

4. THE EFFECT OF BODY DISTORTIONS ON OVERALL WING FORCES AND MOMENTS 

The most immediate application of the results of the preceding section 
is to the problem of calculating the effect of small body distortions on the 
overall lift and pitching and rolling moments of the wings of combinations 
for which the body is approximately cylindrical in the neighbourhood of 
its junction with the wings. 

Consider a thin wing mounted centrally at zero incidence in the plane 
z = 0 on a quasi-cylindrical body of the type considered previously, such 
that the intersection of the wing leading edges and the body is in the plane 
x = 0 ;  the leading edges must be supersonic, the trailing edges straight 
and parallel to Oy, and the aspect ratio must be sufficiently large that the 
Mach lines X = ,f3(Y-Ro) do not intersect the wing tips (see figure 1). 
We suppose for simplicity that the body is exactly cylindrical and circular 
both for x < 0 and for z < 0, but that the upper half of the body is 
distorted for x > 0 in such a way that the slope of a meridian section at 
the point ( X , O )  is q(X,O). Then only the cosine terms of the Fourier 
expansion (7) need be taken; thus 

cc 

q(x, d )  = I: d,(x)cosnd, (x > 0, 2 > O ) ,  (54) 
0-0 
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where 

~ , , ( x )  = zT-l +, qcosne de, (. > 0). 1 and 

The disturbance potential for z > 0 is then given in operational form 
by equation (9) with the sine terms omitted, since the downwash in the plane 
of the wing is then zero ; for z < 0, 4 is identically zero forward of the 
influence region of the trailing edge since, the leading edges are supersonic. 
'I'he pressure on the upper surface of the wing is similarly given by 
equation (lo), with 6 = 0 ( y  > 0) or 0 = ~ ( y  < 0). 

Referring now to 9: 3.1, we deduce at once that the lift on the starboard 
wing is given by 

C 

0 0 
L = 1 (8LIaX)d-X = PRO f ( a L / a X ) d x ,  

where C is the root chord and c = C/PRo. 
the lift is 

Thus the operational form for 

from equation (17), in which x has to be replaced by c, so that p now 
corresponds to dldc. 

Interpreting equation (55) by means of the product theorem, we get 

W)/(* 40) = - 2 f j 

IM,/(R9qo) = -2  2 j" 4 , l t ( c - w u t ) .  (57) 

u ,Y(aLjaX) d X  = - P"H;4 J x(aL/aX) c h .  (58) 
= - I,, ( 1  

4& - E )  d 4 0 .  (56) 
? L - ( 1  6-11- 

The rolling moment M ,  on this wing is similarly given by 

1 , = 0  €=I1 

?'he pitching moment Mu about Oy is given by 
c .(' 

Now, from equation (17), 

Substituting in equation (58) and integrating by parts, we get 
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'I'he total lift and moment on both wings produced by a body distortion 
of the specified type can now be obtained by carrying out the same process 
for the port wing (taking 0 = 7r in equation (lo)), and adding to the 
corresponding result for the starboard wing. Thus 

and 

5 .  THE EFFECT OF WING-BODY INTERFERENCE ON OVERALL WING FORCES 

We shall now consider the application of the theory of $3  to certain 
problems in wing-body interference. In  the present paper we shall treat 
only the simplest case, that of a rectangular wing mounted symmetrically 
on an infinite circular cylinder whose axis is in the direction of the free 
stream. The basic theory is due to Nielsen (1955), and only a brief summary 
will be given here. 

5.1. Nielsen's theory of wifig-body interference 

in the form 
The total disturbance potential 4 of the combination may be expressed 

4 = 4 W + b  (63) 

where +,,. is the potential of the wing alone (which is usually taken to be 
continued in a suitable manner through the body), and is the additional 
potential necessary to satisfy the boundary conditions on the body; in 
the present case there is of course no ' body alone' potential. 

Provided that the wing leading edge is supersonic, then ahead of the 
influence region of the trailing edge the flows over the upper and lower 
surfaces of the wing are independent, and the interference potential may 
be expanded as a Fourier series similar to equation (4): 

Here the coefficients a,,,(p) may differ according as z is greater or less than 
zero, and the coefficients of odd order will vanish when the wing is 
symmetrical about the plane y = 0, as is normally the case. The potential $, 
defined by equation (63), then automatically satisfies the boundary condition 
in the plane of the wing since a#@6 = 0 there. In order that the boundary 
condition of zero normal velocity at the body surface may be satisfied, it 
is necessary that 

a+J/ar = - a+,/ar = - R,,u,,, (65) 
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Here urW is the radial component of velocity on the surface 
Let urW be expanded as the Fourier 

when r = 1. 
of the body due to the wing alone. 
series 

where 

and 

Then, if ABrL(p) are the operational forms of AZn(x), the boundary condition 
(65) gives 

so that the interference pressure field in the plane of the wing is given by 
.,,(PI = 70 ~ A , J P ) / { P G ( P ) ) ,  (67) 

(68) 
m 

c,, = (PI - Po)/% = - 2P-l c A , , ( p ) K , , , ( p r ) / ~ ~ , ( p ) .  
n = O  

It is clear that the ratio -urw/U corresponds to  the body slope 
considered in $ 2, $ 3 & $ 4, so that the effect of the interference between the 
flow field of the wing and the body is equivalent (so far as the wing is 
concerned) to a simple distortion of the body of the type considered 
previously. The remainder of the theory is thus exactly as given in $ 2  
and need not be discussed further here; some results concerning the 
detailed pressure distribution are given by Nielsen (1955). 

5.2. L q t  and pitching moment of rectangular wings on a cylindrical body 
Consider a thin rectangular wing, whose aspect ratio is sufficiently 

large that the Mach lines from the leading edge of the wing-body junction 
do not intersect the wing tips (the aspect ratio A of the exposed wing must 
exceed 2/p). The wing is mounted at incidence u on a cylinder of radius r, 
which is at zero incidence, so that the wing leading edge coincides with the 
y-axis. The flow field of the wing alone is then two-dimensional in the 
appropriate region of the body, and consists simply of a constant downwash 
U over the region 1x1 < x. We have therefore urW = - &sine for 
1x1 < x,  while u,, = 0 elsewhere; and the Fourier coefficients A2,(x)  
are given, for 0 < B < TT, by 

d 
A, = 2an-1 J sine de 

0 

and 4 

where 4 = sin-lx if x < 1, and 

A , ,  = 4un-lI  sin e cos 2n0 do, 

= i n  if x > 1. 
0 

A27N = af2n(x), 
F.M. 

(n >, 1) 

Thus (see Nielsen 1955) 

D 
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where 
fo(x) = (2/~){1-(1-x2)1~2~ if x < 1, 

if x > 1 ;  = 2/n 

and, for n > 1, 
cos(2n - 1)C cos(2n + l)c$ 2 - - -1 if x < I, 

if x > 1. 
2 n + l  4n2- 1 

= - 4/.rr(4n2'- 1) 

5.2.1. Lift 
The total lift increment due to interference, which is twice that on the 

upper surface of the wing, is given by equation (60) as 

- W ) l ( % o )  = - 8 n-0 2 f = o -  lo , zn(C - 8 dA2n(O. 

L,I(G 4 0  a )  = - 8 z f l O , Z , l ( C  - O & n ( t )  a, 

(70) 

Since A,,($) are all continuous functions of x such that Azn(0) = 0, 
equation (70) gives 

(71 4 
n=0 0 

where 

! f&x) = 2n-1x( 1 - x2)--1/2 

f&(x)  = 4&x( 1 - x2)-lI2 cos 2n4 (n 2 1) 

Thus, if c 2 1, when 0 < x < 1, andf;,(x) = 0  for x >, 1. 
m 1  

n = O  0 
LI/(Ri 40 a )  = - 8 2 10,2& - tlfklt) d t -  (71 b) 

We may write this result 

L,/(RE 40 a )  = - 8G(c), 
where 

and 

I t  will be noticed that the functions become infinite like (1 - x)-1/2 
when x = 1 ; because of this singularity the numerical integrations up to 
.$ = 1 were completed by using a formula of the type given by Jeffreys & 
Jeffreys (1956, 5 9.092) : 

- 1.854~,), (73) 
where yn is the value of the integrand at x = nh. 

from 0 to 5, and are given in table 2. 
The functions Go, G,, G, and G, have been computed. for a range of c 
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- 

C 

-- 
0 

0.2 
0.4 
0.6 
0.8 
1 so 

1.2 
1-4 
1 *6 
1.8 
2.0 
2.2 
2 *4 
2.6 
2.8 
3 .0 
3.2 
3.4 
3.6 
3.8 
4 .O 
4.2 
4.4 
4.6 
4.8 
5.0 
co 

Go 

0 
0 

0.0006 
0.0032 
0.0102 
0.0258 
0.0583 
0.1088 
0.1743 
0.2528 
0.3424 
04417 
0.5494 
0.6645 
0.7861 
0.9135 
1.0461 
1.1833 
1.3245 
1.4695 
1.6179 
1.7694 
1.9234 
2.0801 
2.2390 
2.4000 

0 
0~0001 
0.0012 
0-0052 
0.0135 
0.0234 
0.0214 
0.001 5 

-0.0294 
-0.0663 
-0.1046 
-0.1407 
-0.1723 
-0.1979 
-0.2170 
- 0.2298 
-0.2371 
-0.2397 
-0.2388 
-0.2355 
-0.2309 
-0.2258 
- 0.2208 
-0.2163 
-0.2127 
-0.2100 
- 0.21 22 

0 
0.0001 
0.0009 
0.0023 
0.0008 

-0.0098 
-0.0164 
- 0.01 65 
-0.0133 
- 0.0087 
-0'0052 
-0.0036 
-0.0039 
- 0.0053 
- 0'0068 
-0.0079 
-0.0082 
- 0.0081 
- 0.0076 
-0*0071 
-0.0068 

-0.0071 

0 
0~0001 
0.0005 

-0.0003 
- 0.0049 
-0.0065 
-0.0027 

0~0010 
0.0015 

0 
-0~0020 
-0.0026 
-0.001 7 
-0.0008 
- 0.0008 
- 0.001 0 

0.0012 

Table 2. The functions G,,(c). 

When c is large, an asymptotic expansion for G(c) may easily be obtained 
from the results given in equation (52) for lo,n(~). We have, when c > 1, 
integrating equation (72) by parts, 

Go(4 = ( 2 / 4  l o ,o (c )  - &,o(c - O(1 - 52)-1'2 d f  9 { it 1 
and since &o(x) - 3nx - log 2x - 1 + an/x + O(log XI$), it follows that 

Similarly, we find that 

when n >, 1 ; and since it can be shown that 

G ~ ( c )  N C - ( ~ / T ) ~ O ~ ~ C - ( ~ / ~ + & ) + C - ~ + O ( C ~ I ~ ~ C ) .  (74) 

(75) G,,(c) - - 2/n.rr(4n2 - 1)(2n - 1)  

2 [n(4n2 - l ) ( h  - l)]-l= in2 + .t. - 2 log 2, 
m 

n-1 

it follows that 

It is found that for c = 5 the asymptotic formula (76) gives a result which 
differs by less than Sq/, from that obtained by direct computation, so that 

G(c) - C - ( ~ / ~ ) I O ~ ~ C - ( ( ~ / ~ T T + . ~ ~ ) + C - ~ + O ( C - ~ I ~ ~ C ) . '  (76) 

D 2  
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it provides a satisfactory method of extending the calculations to any desired 
value of c. Greater difficulty is experienced for small values of c, due to 
slow convergence of the series zGz,'(c). A first approximation as c 
approaches zero can be found, following Nielsen (1955) by considering 
the body as a vertical boundary on which is a given distribution of sources 
corresponding to the normal velocity produced by the wing. In this way 
we find that 

The use of four terms only of the series 2 Gz,(c) in determining the function 
C ( c )  appears to be adequate, with a probable error not exceeding about 2%, 

G(c) = c3/9n when c -+ 0. (77) 

f 
C 

Figure 3. The function G(c). 

for c > 2 ;  for smaller values of c the accuracy decreases rapidly, while 
the formula (96) cannot be expected to apply for c > 6.  There is thus an 
intermediate range in which G(c) has to be estimated graphically, but this 
is not expected to introduce any serious error. The function G(c) is shown 
in figure 3. 

Nielsen (1955) expresses his results for the effect of interference on the 
total lift of rectangular wings of finite aspect ratio in the form of a coefficient 
K,, defined as the ratio of the lift on the exposed wings in combination 
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with the body to that on the exposed wings joined together in the absence 
of the body. It can easily be shown that, provided the exposed aspect 
ratio A exceeds 218, so that tipseffects do not enter into the interference 
calculations, the ratio k,, may be expressed in terms of the function G(c) 
as 

The quantity 4G(c)/3c2, which gives the value of (1 --kLW) when /3A = 2, 
is shown in figure 4 and compared with the corresponding result obtained 
by Nielsen (1955). The agreement between the two methods is reasonably 
good for the smaller values of c (less than about 4), but Nielsen has over- 
estimated the magnitude of the interference effect when c is large. This 

k,, = 1 - 4G(c)/c2(2/3A - 1). (78)' 

c = L  
P R" 

Figure 4. Effect of wing-body interference on the lift of a rectangular wing on a 
cylindrical body. 

is due to the use of an incorrect asymptotic formula, which is equivalent to 

The error appears to be due to the fact that equation (79) was obtained by 
integrating an asymptotic expression for the span loading ; and though the 
latter is correct, an examination of its derivation shows that it is applicable 
only when x / r  (or more precisely (x- r + l ) / r )  is large. Thus, even when 
c is large, this expression is only correct in a region near the body, and it 
is not permissible to integrate it in a spanwise direction to obtain the total 
lift. 

G(c) - ( ~ c / T ) (  1 + log 2) - (2/~)10g c + O( 1). (79) 

5.2.2. Pitching moment and centre of pressure 

due to interference is found by means of equation (62) to be 
The increase M in nose-up pitching moment about the leading edge 

gf 
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and this is equivalent to 

where 
M l J I / w ;  4 0  

G(-l)( c) 

C. Lock 

= 8 [ cG( C) - G(-')( c)] , (81) 
-c 

= G(x)dx. 
0 

Using equation (72) for the lift decrement, combined with the standard 
linearized theory for wings of finite span, it can easily be shown that the 
position of the centre of pressure is given in terms of the chord by 

where k,, is given by (78). The asymptotic expression when c is large is 

The variation of the position of the centre of pressure with c is shown in 
figure 5 for PA = 2 ;  again Nielsen overestimates the forward movement 
for c greater than about 4. 

0 46 

0.44 

x c  P - 
t 

0 42 

0.40 
D 2 4 6 a 10 12 14 16 18 20 

C 

Figure 5 .  Effect of wing-body interference on position of centre of pressure for a 
rectangular wing on a cylindrical body. 

5.3. The drag at zero lift of rectangular wings on a cylindrical body 
The theory of $5.1 can easily be extended to give the drag of any 

rectangular wing of symmetrical cross-section at zero incidence. We suppose 
that the shape of the wing section is given by the slope 

dZ/dX = S(X/C) forz  > 0. (84) 
The wing alone produces, for z > 0, an upwash field 

UZW = US(X/C- PZjC). 

(No connection is intended with the Dirac delta function; S(x) may be 
an arbitrary function of x in 0 < x < 1 and may have a finite number of 
discontinuities in that range.) This upwash field has a component normal 
to the body surface : 

1 u,, = U[sinO[8(x/c- IsinO(/c) when -4 < 0 < 4 
andn-4  < 6 < n++, 1 (85) 

= 0 elsewhere, J 
where as before 4 = sin-lx if 0 < x < 1, and 4 = in if x > 1.  
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The Fourier components of - urW/ U are thus 
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A,, = - 
and x-sin0 

7r 1: cos 2n0 sin 8 8( -) do. J 
If we write sin 0 = 5 and cos 2n0 = C2,L( f )  (a polynomial of degree 2n in e) ,  
.then 

But (cf. equation (69)) 

fZn(X)  = j: sin e cos 2n0 do, 
77 

Hence 

'This may be written in Stieltjes form 

where 6(E) is defined to be zero for 5 < 0. 
The total interference drag D, is given by 

(88) = 2REpo U2 S(x/c) dx 1 j3CpI(x, r )  dr. 
x =o T = l  

Now we consider the operational form 

interpreting equation (89) by the product theorem and making use of the 
fact that A2,(0) = 0. Substituting in equation (88) and integrating by 
parts, we get 

d 
Dr/(Rt 40)  = 8 /" ~(x/c)  dx - I x  2 1 0 , 2 ~ ~ ( x  - E)AL(O d t  

= - 8 J d'(x/c) J c Io,zn(X - EYL(E) d ~ ,  

x=o dx 0 n=O 
' C  + x m  

x=o 0 n=O 
(91) 

where again 6( f )  is defined to be zero for [ > 1. 
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But, from (87), 

where Gz,(x) is defined above (equation (72)). 
we have finally 

Substituting in equation (91), 

DI/(R: 4 0 )  = 8 f+ da(x/c) G(x-6)  d&(f /c)  (93 a) 
2 =o g=o- 

It is necessary to use the Stieltjes form (93 a) if S(5)  has any discontinuities 
in the range 0 < f < 1, but if 6 ( f )  is continuous in this range, then the 
extended form of this equation is 

-6(0)6(1)G(c))-. (93 b) 

For a section symmetrical about x/c = 4, this simplifies to 

D,/(8R2,qo) = c2 sl(x/c)dx l2 F(f /c)G(x-()d.$+ 
0 0 

+ 2c-1 6(0) f G’(x/c)G(x) dx + S2(0)G(c). (93 c) 

For a wing of biconvex parabolic section and thickness ratio T,  we have 
0 

6(X/C) = 2T(1 - 2X/C), (94) 
and equation (93 c) gives 

DI/(Riqo) = 87’ { 1 6 ~ ~ ’  1’: dx fs G([)  d f  - 16c-1 G(x) dx + 4G(c)} 
0 0 

( c -x )G(x )dx -16c1  p G(x)dx+4G(c)} 
0 

= - 3 2 ~ - ~ ~ ~ { 4  0 xG(x)dx-czG(c)} ,  (95 

The interference drag ratio kDw, defined in a similar way to kLw by 
Total wave drag - D,  + D, - 

kDw = Dw Wave drag of exposed wing alone’ 

is thus given by 

for a wing of biconvex section. 
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The corresponding result for a symmetrical double wedge section (for 
which the Stieltjes form (93a) has to be used) is 

(97) 
2 

pAc2 k,, = 1 - - (4G($c) - G(c)}.  

These results are shown in figure 6, where the drag ratio K,, is plotted 
against the equivalent chord-radius ratio c = C/(/3ro), for wings of exposed 
aspect ratio 2/p. As c increases from zero, kDw at first rises from 1.0 to 
a maximum of about 1.03, reached when c is between 3 and 4; it then 
decreases steadily, being again equal to 1.0 for c between 6 and 7, and 
reaches a minimum of about 0.97 when c is 15, after which it increases 
slowly towards the asymptotic value 1.0. The difference between the 
results for the two wing sections is very small. 

Figure 6 .  Effect of wing-body interference on wave drag of a rectangular wing on a 
cylindrical body. 

The results for a double wedge section may be compared with those 
obtained by Nielsen (1955); there is good qualitative agreement but again 
Nielsen has overestimated the magnitude of the interference effect, for the 
same reason that has been suggested in the case of lift. 

A qualitative explanation of the behaviour of the interference drag 
can most easily be given by considering a wing of double wedge section. 
The forward half of the wing produces a compression wave which is in 
effect reflected from the body as an expansion acting over the influence 
region of the junction of the wing leading edge with the body. This 
expansion causes a thrust on the forward half wing and a drag on the rear 
half. Similarly, the rear half wing produces an expansion which is reflected 
as a compression over the smaller influence region of the junction of the 
half-chord line with the body ; this produces a further thrust. The balance 
between these components of thrust and drag depends on the value of c ;  
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and it may be seen from consideration of the corresponding results for a 
single wedge (which are qualitatively similar to those for the lift ratio k,, 
(figure 4)) that for small values of c the drag on the rear half outweighs 
the two components of thrust, while as c is increased the balance is gradually 
altered until for large values of c there is a resultant decrease in the total 
drag as compared with that of the wing alone. This  balance between 
opposing forces of thrust and drag also explains why the magnitude of the 
effect of wing-body interference on drag is in this case very much less than 
on lift; thus the drag correction does not exceed +37/,, while the lift 
correction has a maximum value of about 12% (both for PA = 2). 

An interesting general result for large values of c may be obtained by 
substituting the asymptotic expression (95) directly into the interference 
drag formulae (93). It may easily be shown that the leading terms of the 
resultant asymptotic expression for D, are 

D,/8REq0 - - c j [8(5)12 df + w-llog c(S2(0) + S2( 1)) + O( l), (98) 
0 

provided that 6 ( f )  is continuous in 0 < 5 < 1. 
Now the wave drag of the exposed wing panels joined together is given by 

so that 

Hence 

It is noteworthy that the first term in this expression is independent of the 
section shape. 

which may be verified from equation (96). 
It may also be shown from equation (97) that the first two terms of the 

corresponding asymptotic expression for k,, for a double wedge section 
are in fact identical with (loo), but it appears from equation (99) that this 
is not true for a general section shape. 

Although it has been shown here that the effect on the total wave drag 
at zero lift of the interference between rectangular wings of moderate aspect 
ratio and cylindrical bodies is small from a practical point of view, the 
problem considered here is of some fundamental interest because it provides 
an example in which it is possible to compare the results of true linear theory 
with those of the supersonic area rule. 

For a biconvex section, equation (99) gives 

kDly - - 2/PAc(l- ( 6 / ~ ~ ) 1 0 g  c + O(C-’)}, (100) 

6. COMPARISON WITH THE SUPERSONIC AREA RULE 

It has recently been realized that the supersonic area rule due to Jones 
(1953) for the wave drag of wing-body combinations is not strictly correct, 
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even within the limitations of the linearized theory, except for a very 
restricted class of objects, which it is not at present possible to define 
at all clearly. This question has been discussed in detail by Lomax & 
Heaslet (1956), who give several examples in which the area rule can be 
shown to lead to considerable errors ; the problem considered in 9 5 provides 
a further example. 

The  area rule is in effect based on two fundamental assumptions, which 
are to some extent inter-related: (a )  that the flow round a symmetrical 
wing-body combination at zero lift may be represented by a distribution 
of simple sources over the plane of the wings and along the axis of the body ; 
and (6 )  that the total (linearized) velocity potential for the combination is 
equal to the sum of the potentials for the exposed wing and the body taken 
separately, each in the absence of the other. 

These assumptions are clearly incorrect in the case of wings mounted 
on a cylindrical body. For such combinations assumption (b )  implies 
that the velocity potential is simply equal to that of the exposed wings alone ; 
and this will not in general satisfy the condition of zero normal velocity on 
the body, so that an additional axial distribution of poles and multipoles 
has to be added, thus violating assumption (a).  

I n  order to make a more direct comparison with Nielsen’s method, the 
area-rule potential may be thought of as made up of the potential of the 
complete wing continued through the body, together with the negative 
of the potential due to the portion of the wing blanketed by the body; 
and the latter should be equal t o  the interference potential of 9 5.1. 
Although these potentials are to some extent similar, it is obviously 
impossible in general for them to be completely equivalent. That  this is 
so in the case of rectangular wings may be verified indirectly by comparison 
of the interference drags obtained by the two methods. 

Consider a rectangular wing of overall span 2s and unit chord, mounted 
on a cylindrical body of radius R,. The  oblique area distribution S(f, 8) of 
the exposed wing, defined as the projection on planes perpendicular to Ox 
of the area of a section by the plane 

is clearly given by 

where S((, 0,s) is the corresponding area distribution for a complete 
rectangular wing of span 2s. 

X = ~ + ~ Y c o s ~ ,  (101) 

(102) S( t ,  0) = S(4,4 s) - S(t,8, Ro), 

The  derivative of S(t,O,s) with respect to f is given by 

~ ’ ( 6 ,  e,  S) = 2p-1 sec e ( f (<  + ps  cos e) -f(f - ps cos 8)), (103) 

where 2 = f ( X )  is the equation of the wing section (cf. Lock 1957), and 
f ( X )  is defined to  be zero outside the wing chord. 

The  supersonic area rule gives for the overa,ll wave drag 
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where primes denote differentiation with respect to t or q ;  the double 
integral is taken over the range of 5 (or q) for which S’(t, 0) does not vanish. 

Substituting for S(<, 0) from equation (102), we see that 

D = D(s) + D(R0) - 2Di(s, Ro), (105) 

where D(s) is the drag of a rectangular wing of span 2s with the given section, 
and Di is defined by 

d0 ji dtdqlog lt-qlS”((, O,s)S”(q, O,Ro) (106) 
ni2 

0 
qc1D(s,R0) = --+ 

x {f’(t + 01) - f ( t  - .l)){f’(V+ 4 - f ( q  - 4, (107) 

where crl = Ps cos 0 and u2 = PRO cos 0. 
variables t and q reduce this to the form 

Linear transformations of the 

4;*Di(s, Ro) = - 4 + p 2  I”‘ sec20 d0 I’ dx dyf’(x)f’(y) x 
0 0 0  

x logl{(x-y)2-(ul- .2)2}/{(.-Y)“((al+a*)2}1 ; (lOf-9 
and by comparing this with the corresponding expression for D(s) (see 
Lock 1957) it may easily be shown that 

Di = D{$(s + Ro)} - D{+(s - Ro)]. (1091 
Now if s 2 it is known that 

D(s)/!70 = 2scDo, 

where C,. is the two-dimensional wave drag coefficient for the given wing 
section ; and if the aspect ratio A = 2(s - Ro) of the exposed wing is restricted, 
as in $ 5 . 3 ,  to be greater than 2/P, then equation (109) gives simply 

Substituting in equation (124), we get 
D i / q O  = 2R0 cDo. 

D / q O  = 2(s - RO)CDB + { q - l D ( R O )  - 2R0 cD,>. (110) 

The first term represents the drag of the exposed wing panels joined 
together, so that the interference drag ratio k D ,  is obtained as 

where CDl is the drag coefficient of the portion of the wing blanketed by 
the body, whose aspect ratio is 2/(/3c) in the notation of $ 5 .  (This result 
has also been obtained by Sheppard (1957).) Equation (111) suggests 
that k,, = 1 for 0 < c < 2, and that k,, < 1 for c > 2. This can 
easily be seen qualitatively by considering the physical assumption on 
which the area rule is based: that the flow field is equivalent to that of the 
exposed wing panels with the body removed. When c is less than 2, there 
is no interaction between the two wings and the drag is unaltered ; as soon 
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.as c becomes greater than 2, the compression wave from the inner leading 
edge of one wing acts near the trailing edge of the other to  give a reduction 
in total drag. 

The value given by equation (111) for k,, according to the area rule 
has been calculated for wings of biconvex and double wedge section, using 
the results of Harmon (1947) ; we obtain 

k,, = 1- TPAC - 2 ZCOS-~? c c  - 1 [(6- ;)cosh-1&-(1- :)""I (112) 

for a biconvex section, and 

where 
,f( C) = &(c2 - 4)1/2 + (2/c)cOsh-l &C - 2 COS-~(~/C) (113) 

for a symmetrical double wedge section. 
These results are included in figure 6 for comparison with those of the 

accurate linearized theory of $5. It is clear that for values of c less than 
about 6, the area rule is completely erroneous in predicting the effect of 
wing-body interference in the present case, and that not until c exceeds 10 
is there any quantitative agreement with linearized theory. The latter 
point was to be expected from previous work on the subject ; it has frequently 
been stated, and recently proved rigorously by Fraenkel(l958) that the area 
rule is always true for combinations of the type considered here, provided 
thatsthe ratio corresponding to c of the present paper is large. In fact it 
may easily be verified that the first two terms of the asymptotic expansions 
for k,, when c is large, obtained from equations (112) and (113), are 
identical with the corresponding terms in equations (96) and (97) (cf. 
equations (100) et seq.). 

It  must again be emphasized that the actual numerical difference between 
the results of the area rule and of exact linearized theory is not large for the 
example considered here ; the ratio Drag (Linearized Theory)/Drag (Area  
Rule) has a maximum of about 1 +0*12/PA when c = 4, for values (> 2) 
of PA which are covered by the present theory. But there is little doubt 
that for smaller aspect ratios the error in estimating the wave drag of the 
wings by the area rule will continue to increase and may become of practical 
importance. 

7. CONCLUSIONS 
An extension has been developed of the linearized theory of Nielsen 

(1955) and Randall (1955) which enables more rapid and accurate calculations 
than hitherto possible to be made of the overall forces and moments acting 
on a restricted class of wings mounted on quasi-cylindrical bodies. Two 
principal examples have been studied in detail. 

The first of these is concerned with the changes produced by small 
distortions of an otherwise cylindrical body on the static stability of thin 
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centrally mounted wings at zero incidence, subject to the condition that 
the trailing edge is straight and unswept and that the leading edges are 
supersonic. 

The second application is to the problem of wing-body interference at 
supersonic speeds, in particular to the example previously considered by 
Nielsen (1955) of a rectangular wing mounted on a long cylindrical body 
of circular cross-section, the latter being at zero incidence ; both methods 
are applicable only if the exposed ratio exceeds 2/p. The effect of 
interference on lift and pitching moment is found to be in reasonably good 
agreement with Nielsen’s results for small values of the equivalent 
chord-radius ratio c = - C//3Ro, but for values of c greater than about 4 
the theory of the present paper, which predicts smaller interference effects 
than does Nielsen’s (due to a slight error in the latter), should be the more 
accurate. 

A new formula has been derived for the effect of interference on wave-drag 
at zero incidence which enables this to be computed rapidly and accurately 
for a rectangular wing of arbitrary cross-section. The results for double 
wedge and biconvex parabolic sections are compared with those of the 
supersonic area rule, and it is found that there is poor agreement until the 
ratio c is greater than about 10 ; and this is a value that is seldom attained 
in practice. The numerical discrepancy in the total wave drag of the wings 
is not large for aspect ratios covered by the present method, but may well 
become more serious for values of PA much less than 2 ; although, since 
only the drag of the wings has been considered here, the area rule may still 
give reasonable accuracy €or a typical complete wing-body combination 
when the drag of the fore- and after-bodies is taken into account. 

It is clear that further comparisons of the type given above are desirable 
before a true assessment of the accuracy of the supersonic area rule can be 
made. One possible extension of the methods of the present paper would 
be to study the effects of body modifications on the wave drag of combinations 
with rectangular wings, and it may also be possible to design body shapes 
to give an overall reduction in drag ; these shapes and the corresponding 
drag values could then be compared with the predictions of the area rule. 

The work described above was carried out in the Aerodynamics Division 
of the National Physical Laboratory and is published by permission of the 
Director of the Laboratory. 
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